首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10931篇
  免费   1406篇
  国内免费   5738篇
  2024年   16篇
  2023年   403篇
  2022年   462篇
  2021年   528篇
  2020年   675篇
  2019年   814篇
  2018年   744篇
  2017年   762篇
  2016年   686篇
  2015年   678篇
  2014年   726篇
  2013年   955篇
  2012年   683篇
  2011年   730篇
  2010年   584篇
  2009年   821篇
  2008年   714篇
  2007年   792篇
  2006年   683篇
  2005年   610篇
  2004年   572篇
  2003年   509篇
  2002年   416篇
  2001年   367篇
  2000年   334篇
  1999年   327篇
  1998年   260篇
  1997年   243篇
  1996年   251篇
  1995年   218篇
  1994年   195篇
  1993年   153篇
  1992年   151篇
  1991年   118篇
  1990年   117篇
  1989年   116篇
  1988年   87篇
  1987年   70篇
  1986年   63篇
  1985年   65篇
  1984年   61篇
  1983年   25篇
  1982年   74篇
  1981年   44篇
  1980年   46篇
  1979年   45篇
  1978年   25篇
  1977年   16篇
  1974年   9篇
  1973年   9篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
The large quantity of green cull bananas has the potential of being used industrially and, thereby, to improve banana economics and eliminate the large environmental problem presented by banana waste. This review summarizes the present knowledge of the composition, structure, physiochemical properties, modifications, and digestibility of banana starches and provides suggestions for needed research to improve the utilization of green cull bananas.  相似文献   
992.
Although there are generalized conceptual models that predict how above and belowground biomass increase during secondary succession after abandonment from agriculture, there are few data to test these models for fine roots (defined as ≤2 mm diameter) in tropical forests. We measured live and dead fine roots (0–10 cm depth) in 18 plots of regenerating tropical dry forest in Costa Rica that varied in age from 5 to 60 yrs, as well as in soil properties. We predicted that both stand age and soil fertility would affect fine roots, with greater values in older forests on low fertility soils. Across two sampling dates and locations, live fine roots varied from 0.35 to 3.53 Mg/ha and dead roots varied from 0.15 to 0.93 Mg/ha. Surprisingly, there was little evidence that surface fine roots varied between sampling dates or in relation to stand age. By contrast, total, live, and dead fine roots averaged across sampling dates within plots were negatively correlated with a multivariate index of soil fertility (Pearson correlations coefficients were ?0.64, ?0.58, and ?0.68, respectively; < 0.01) and other individual edaphic variables including pH, silt, calcium, magnesium, nitrogen, and phosphorus. These results suggest that soil fertility is a more important determinant of fine roots than forest age in tropical dry forests in Costa Rica, and that one‐way these plant communities respond to low soil fertility is by increasing fine roots. Thus, simple conceptual models of forest responses to abandonment from agriculture may not be appropriate for surface fine roots.  相似文献   
993.
Elastin is the polymeric, extracellular matrix protein that provides properties of extensibility and elastic recoil to large arteries, lung parenchyma, and other tissues. Elastin assembles by crosslinking through lysine residues of its monomeric precursor, tropoelastin. Tropoelastin, as well as polypeptides based on tropoelastin sequences, undergo a process of self‐assembly that aligns lysine residues for crosslinking. As a result, both the full‐length monomer as well as elastin‐like polypeptides (ELPs) can be made into biomaterials whose properties resemble those of native polymeric elastin. Using both full‐length human tropoelastin (hTE) as well as ELPs, we and others have previously reported on the influence of sequence and domain arrangements on self‐assembly properties. Here we investigate the role of domain sequence and organization on the tensile mechanical properties of crosslinked biomaterials fabricated from ELP variants. In general, substitutions in ELPs involving similiar domain types (hydrophobic or crosslinking) had little effect on mechanical properties. However, modifications altering either the structure or the characteristic sequence style of these domains had significant effects on such properties. In addition, using a series of deletion and replacement constructs for full‐length hTE, we provide new insights into the role of conserved domains of tropoelastin in determining mechanical properties. © 2012 Wiley Periodicals, Inc. Biopolymers 99: 392–407, 2013.  相似文献   
994.
The effects of a soil hardpan and Meloidogyne incognita on cotton root architecture and plant growth were evaluated in microplots in 2010 and 2011. Soil was infested with M. incognita at four different levels with or without a hardpan. The presence of a hardpan resulted in increased plant height, number of main stem nodes, and root fresh weight for cotton seedlings both years. Meloidogyne incognita decreased height and number of nodes for seedlings in 2010. Nematode infestation increased seedling root length and enhanced root magnitude, altitude, and exterior path length in 2010. This was also the case for root length and magnitude in 2011 at lower infestation levels suggesting compensatory growth. A hardpan had no consistent effect on these root parameters but increased root volume in both years. A hardpan hastened crop maturity and increased the number of fruiting branches that were produced, while M. incognita infection delayed crop development and reduced plant height and number of bolls. Both M. incognita infection and a hardpan reduced taproot length and root dry weight below the hardpan in both years. Root topological indices under all the treatments ranged from 1.71 to 1.83 both years indicating that root branching followed a herringbone pattern. The techniques for characterizing root architecture that were used in this study provide a greater understanding of changes that result from disease and soil abiotic parameters affecting root function and crop productivity.  相似文献   
995.
Water-soluble corn silk polysaccharides (CSPS) were chemically modified to obtain their sulfated, acetylated and carboxymethylated derivatives. Chemical characterization and bioactivities of CSPS and its derivatives were comparatively investigated by chemical methods, gas chromatography, gel filtration chromatography, scanning electron microscope, infrared spectroscopy and circular dichroism spectroscopy, scavenging DPPH free radical assay, scavenging hydroxyl radical assay, ferric reducing power assay, lipid peroxidation inhibition assay and α-amylase activity inhibitory assay, respectively. Among the three derivatives, carboxylmethylated polysaccharide (C-CSPS) demonstrated higher solubility, narrower molecular weight distribution, lower intrinsic viscosity, a hyperbranched conformation, significantly higher antioxidant and α-amylase inhibitory abilities compared with the native polysaccharide and other derivatives. C-CSPS might be used as a novel nutraceutical agent for human consumption.  相似文献   
996.
997.
The main objective of this study was to determine changes in microbial response in natural soil aggregates for soil characterization in different fluvial land shapes. This study was carried out in fluvial lands formed on accumulated sediment depositions carried by K?z?l?rmak River. The majority soils of the study area were classified as Typic Ustifluvent and Typic Haplustept in Soil Taxonomy. It was found that macroaggregates (especially >6300 μm and 2000–4750 μm diameters) of all soil samples were higher than microaggregate of soils. In addition, it was determined that the Corg content varies between 0.41–0.91% in soil samples. Cmic content was also found higher level in aggregates involved <250 and 250–425 μm diameters as compared to other aggregate size classes. Moreover, we detected that Corg:Cmic ratio was much higher in macroaggregates than in microaggregate fractions. BR levels were also greater in macroaggregates of >6,300, 4,750–6,300 and 2,000–4,750 μm than in the other macroaggregates sizes and microaggregates. Consequently, macroaggregates have relatively more Corg level than the Corg level in microaggregates, even if the absolute values of Cmic were the lower. This study thus evidenced contrasting microbial habitats and their response in different soil aggregate size formed in various developed soils.  相似文献   
998.

Background and Aims

Cereals have two root systems. The primary system originates from the embryo when the seed germinates and can support the plant until it produces grain. The nodal system can emerge from stem nodes throughout the plant''s life; its value for yield is unclear and depends on the environment. The aim of this study was to test the role of nodal roots of sorghum and millet in plant growth in response to variation in soil moisture. Sorghum and millet were chosen as both are adapted to dry conditions.

Methods

Sorghum and millet were grown in a split-pot system that allowed the primary and nodal roots to be watered separately.

Key Results

When primary and nodal roots were watered (12 % soil water content; SWC), millet nodal roots were seven times longer than those of sorghum and six times longer than millet plants in dry treatments, mainly from an 8-fold increase in branch root length. When soil was allowed to dry in both compartments, millet nodal roots responded and grew 20 % longer branch roots than in the well-watered control. Sorghum nodal roots were unchanged. When only primary roots received water, nodal roots of both species emerged and elongated into extremely dry soil (0·6–1·5 % SWC), possibly with phloem-delivered water from the primary roots in the moist inner pot. Nodal roots were thick, short, branchless and vertical, indicating a tropism that was more pronounced in millet. Total nodal root length increased in both species when the dry soil was covered with plastic, suggesting that stubble retention or leaf mulching could facilitate nodal roots reaching deeper moist layers in dry climates. Greater nodal root length in millet than in sorghum was associated with increased shoot biomass, water uptake and water use efficiency (shoot mass per water). Millet had a more plastic response than sorghum to moisture around the nodal roots due to (1) faster growth and progression through ontogeny for earlier nodal root branch length and (2) partitioning to nodal root length from primary roots, independent of shoot size.

Conclusions

Nodal and primary roots have distinct responses to soil moisture that depend on species. They can be selected independently in a breeding programme to shape root architecture. A rapid rate of plant development and enhanced responsiveness to local moisture may be traits that favour nodal roots and water use efficiency at no cost to shoot growth.  相似文献   
999.

Background and Aims

Aluminium is toxic in acid soils because the soluble Al3+ inhibits root growth. A mechanism of Al3+ tolerance discovered in many plant species involves the release of organic anions from root apices. The Al3+-activated release of citrate from the root apices of Al3+-tolerant genotypes of barley is controlled by a MATE gene named HvAACT1 that encodes a citrate transport protein located on the plasma membrane. The aim of this study was to investigate whether expressing HvAACT1 with a constitutive promoter in barley and wheat can increase citrate efflux and Al3+ tolerance of these important cereal species.

Methods HvAACT1

was over-expressed in wheat (Triticum aestivum) and barley (Hordeum vulgare) using the maize ubiquitin promoter. Root apices of transgenic and control lines were analysed for HvAACT1 expression and organic acid efflux. The Al3+ tolerance of transgenic and control lines was assessed in both hydroponic solution and acid soil.

Key Results and Conclusions

Increased HvAACT1 expression in both cereal species was associated with increased citrate efflux from root apices and enhanced Al3+ tolerance, thus demonstrating that biotechnology can complement traditional breeding practices to increase the Al3+ tolerance of important crop plants.  相似文献   
1000.

Background

Electrical capacitance, measured between an electrode inserted at the base of a plant and an electrode in the rooting substrate, is often linearly correlated with root mass. Electrical capacitance has often been used as an assay for root mass, and is conventionally interpreted using an electrical model in which roots behave as cylindrical capacitors wired in parallel. Recent experiments in hydroponics show that this interpretation is incorrect and a new model has been proposed. Here, the new model is tested in solid substrates.

Methods

The capacitances of compost and soil were determined as a function of water content, and the capacitances of cereal plants growing in sand or potting compost in the glasshouse, or in the field, were measured under contrasting irrigation regimes.

Key Results

Capacitances of compost and soil increased with increasing water content. At water contents approaching field capacity, compost and soil had capacitances at least an order of magnitude greater than those of plant tissues. For plants growing in solid substrates, wetting the substrate locally around the stem base was both necessary and sufficient to record maximum capacitance, which was correlated with stem cross-sectional area: capacitance of excised stem tissue equalled that of the plant in wet soil. Capacitance measured between two electrodes could be modelled as an electrical circuit in which component capacitors (plant tissue or rooting substrate) are wired in series.

Conclusions

The results were consistent with the new physical interpretation of plant capacitance. Substrate capacitance and plant capacitance combine according to standard physical laws. For plants growing in wet substrate, the capacitance measured is largely determined by the tissue between the surface of the substrate and the electrode attached to the plant. Whilst the measured capacitance can, in some circumstances, be correlated with root mass, it is not a direct assay of root mass.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号